Opposition-based Firefly Algorithm Optimized Feature Subset Selection Approach for Fetal Risk Anticipation
نویسندگان
چکیده
Recently huge amount of data is available in the field of medicine that helps the doctors in diagnosing diseases when analysed. Data mining techniques can be applied to these medical data to extract knowledge so that disease prediction becomes accurate and easier. In this work, cardiotocogram (CTG) data is analysed using Support Vector Machine (SVM) for predicting fetal risk. Opposition based firefly algorithm (OBFA) is proposed to extract the relevant features that maximise the classification performance of SVM. The obtained results show that opposition based firefly algorithm outperforms the standard firefly algorithm (FA).
منابع مشابه
A Hybrid Filter-Wrapper Attribute Reduction Approach For Fetal Risk Anticipation
In the present days, use of computers has permeated in archiving and analysing vast amount of medical data. Data mining techniques are widely used on these data to excerpt the information and by which an accurate and easy prediction of diseases has become possible. In this paper, Support Vector Machine (SVM) is used to analyse the Cardiotocogram (CTG) data for the prediction fetal risk. A hybri...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملFast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets
Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...
متن کامل